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Generating temporally-consistent high-fidelity videos can be computationally expensive, especially
over longer temporal spans. More-recent Diffusion Transformers (DiTs)— despite making significant
headway in this context— have only heightened such challenges as they rely on larger models and
heavier attention mechanisms, resulting in slower inference speeds. In this paper, we introduce a
training-freemethod to accelerate videoDiTs, termedAdaptive Caching (AdaCache), which ismotivated
by the fact that “not all videos are created equal”: meaning, some videos require fewer denoising steps to
attain a reasonable quality than others. Building on this, we not only cache computations through the
diffusion process, but also devise a caching schedule tailored to each video generation, maximizing
the quality-latency trade-off. We further introduce a Motion Regularization (MoReg) scheme to utilize
video information within AdaCache, essentially controlling the compute allocation based on motion
content. Altogether, our plug-and-play contributions grant significant inference speedups (e.g. up
to 4.7× on Open-Sora 720p - 2s video generation) without sacrificing the generation quality, across
multiple video DiT baselines.
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1 Introduction

Diffusion models (Ho et al., 2020; Song et al., 2020) have become the standard for generative modeling in
recent years, arguably surpassing the quality of VAEs (Kingma, 2013; Rolfe, 2016), GANs (Karras et al., 2019;
Goodfellow et al., 2020) and Auto-Regressive models (Chang et al., 2022, 2023). This observation holds
in a wide-range of applications including image (Rombach et al., 2022; Saharia et al., 2022), video (Singer
et al., 2022; Blattmann et al., 2023a), 3D (Poole et al., 2022; Liu et al., 2023a), and audio (Kong et al., 2020;
Huang et al., 2023) generation, as well as image (Hertz et al., 2022; Avrahami et al., 2023) and video (Qi
et al., 2023; Wu et al., 2023) editing. More recent Diffusion Transformers (DiTs) (Peebles and Xie, 2023; Ma
et al., 2024a) show better promise in terms of scalability and generalization compared to prior UNet-based
diffusion models (Rombach et al., 2022), revealing intriguing horizons in GenAI for the years to come.
Despite the state-of-the-art performance, DiTs can also be computationally expensive both in terms of memory
and computational requirements. This becomes especially critical when applied with a large number of
input tokens (e.g. high-resolution long video generation). For instance, the reason for models such as Sora
(OpenAI, 2024) not being publicly-served is speculated to be the high resource demands and slower inference
speeds (Liu et al., 2024b). To tackle these challenges and reduce the footprint of diffusion models, various
research directions have emerged such as latent diffusion (Rombach et al., 2022), step-distillation (Sauer et al.,
2023; Yin et al., 2024), caching (Wimbauer et al., 2024; Ma et al., 2024c; Habibian et al., 2024), architecture-
search (Zhao et al., 2023b; Li et al., 2024b), token reduction (Bolya and Hoffman, 2023; Li et al., 2024a) and
region-based methods (Nitzan et al., 2024; Kahatapitiya et al., 2024). Fewer techniques transfer readily from
UNet-based pipelines to DiTs, whereas others often require novel formulations. Hence, DiT acceleration has
been under-explored as of yet.
Moreover, we note that not all videos are created equal. Some videos contain high-frequency textures and
significant motion content, whereas others are much simpler (e.g. with homogeneous textures or static
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Figure 1 Effectiveness of Adaptive Caching: We show a qualitative comparison of AdaCache (right) applied on top of
Open-Sora (Zheng et al., 2024) (left), a baseline video DiT. Here, we consider generating 720p - 2s video clips, and
report VBench (Huang et al., 2024) quality and average latency (on a single A100 GPU) on the benchmark prompts from
Open-Sora gallery. AdaCache generates videos significantly faster (i.e., 4.7× speedup) with a comparable quality. Also,
the number of computed steps varies for each video. Best-viewed with zoom-in. Prompts given in supplementary.

regions). Having a diffusion process tailored specifically for each video generation can be beneficial in terms
of realizing the best quality-latency trade-off. This idea has been explored to some extent in region-based
methods (Avrahami et al., 2023; Nitzan et al., 2024; Kahatapitiya et al., 2024), but not sufficiently in the context
of video generation.
Motivated by the above, we introduce Adaptive Caching (AdaCache) for accelerating video diffusion trans-
formers. This approach requires no training and can seamlessly be integrated into a baseline video DiT at
inference, as a plug-and-play component. The core idea of our proposal is to cache residual computations
within transformer blocks (e.g. attention or MLP outputs) in a certain diffusion step, and reuse them through
a number of subsequent steps that is dependent on the generated video. We do this by devising a caching
schedule, i.e., deciding when-to-recompute-next whenever making a residual computation. This decision
is guided by a distance metric that measures the rate-of-change between previously-stored and current
representations. If the distance is high we would not cache for an extended period (i.e., #steps), to avoid
reusing incompatible representations. We further introduce a Motion Regularization (MoReg) to allocate
computations based on the motion content in the video being generated. This is inspired by the observation
that high-moving sequences require more diffusion steps to achieve a reasonable quality. Altogether, our
pipeline is applied on top of multiple video DiT baselines showing much-faster inference speeds without
sacrificing the generation quality (see Fig. 1). Finally, we validate the effectiveness of our contributions and
justify our design decisions through ablations and qualitative comparisons.

2 RelatedWork

Diffusion-based Video Generation (Singer et al., 2022; Ho et al., 2022; Blattmann et al., 2023a; Girdhar et al.,
2023; Chen et al., 2024a) has surpassed the quality and diversity of GAN-based approaches (Vondrick et al.,
2016; Saito et al., 2017; Tulyakov et al., 2018; Clark et al., 2019; Yu et al., 2022), while also being competitive
with recent Auto-Regressive models (Yan et al., 2021; Hong et al., 2022; Villegas et al., 2022; Kondratyuk et al.,
2023; Xie et al., 2024; Liu et al., 2024a). They have become a standard component in the pipelines for frame
interpolation (Wang et al., 2024c; Feng et al., 2024), video outpainting (Fan et al., 2023; Chen et al., 2024e;

2



Wang et al., 2024a), image-to-video (Guo et al., 2023; Blattmann et al., 2023a; Xing et al., 2023), video-to-video
(i.e., video editing or translation) (Yang et al., 2023a; Yatim et al., 2024; Hu et al., 2024), personalization (Wu
et al., 2024; Men et al., 2024), motion customization (Zhao et al., 2023a; Xu et al., 2024) and compositional
generation (Liu et al., 2022; Yang andWang, 2024). The underlying architecture of video diffusion models has
evolved from classical UNets (Ronneberger et al., 2015; Rombach et al., 2022) with additional spatio-temporal
attention layers (He et al., 2022; Blattmann et al., 2023b; Chen et al., 2023b; Girdhar et al., 2023), to fully-fledged
transformer-based (i.e., DiT (Peebles and Xie, 2023)) architectures (Lu et al., 2023; Ma et al., 2024b; Gao et al.,
2024; Zhang et al., 2024b). In the process, the latency of denoising (Song et al., 2020; Lu et al., 2022) has also
scaled with larger models (Podell et al., 2023; Gao et al., 2024). This becomes critical especially in applications
such as long-video generation (Yin et al., 2023; Wang et al., 2023a; Zhao et al., 2024a; Henschel et al., 2024;
Tan et al., 2024; Zhou et al., 2024), while also affecting the growth of commercially-served video models
(Runway AI, 2024; OpenAI, 2024; Luma AI, 2024; Kling AI, 2024).
Efficiency of Diffusionmodels has been actively explored with respect to both training and inference pipelines.
Multi-stage training at varying resolutions (Chen et al., 2023a, 2024b; Gao et al., 2024) and high-quality data
curation (Ramesh et al., 2022; Ho et al., 2022; Dai et al., 2023; Blattmann et al., 2023a) have cut down training
costs significantly. In terms of inference acceleration, there exist two main approaches: (1) methods that
require re-training such as step-distillation (Salimans and Ho, 2022; Meng et al., 2023; Sauer et al., 2023; Liu
et al., 2023b), consistency regularization (Song et al., 2023; Luo et al., 2023), quantization (Li et al., 2023;
Chen et al., 2024c; He et al., 2024; Wang et al., 2024b; Deng et al., 2024), and architecture search/compression
(Zhao et al., 2023b; Yang et al., 2023b; Li et al., 2024b), or (2) methods that require no re-training such as
token reduction (Bolya and Hoffman, 2023; Li et al., 2024a; Kahatapitiya et al., 2024) and caching (Ma et al.,
2024c; Wimbauer et al., 2024; Habibian et al., 2024; Chen et al., 2024d; Zhao et al., 2024c). Among these,
training-free methods are more-attractive as they can be widely-adopted without any additional costs. This
becomes especially relevant for video diffusion models that are both expensive to train and usually very slow
at inference. In this paper, we explore a caching-based approach tailored for video DiTs. Different from prior
fixed caching schedules in UNet-based (Ma et al., 2024c; Wimbauer et al., 2024; Habibian et al., 2024) and
DiT-based (Chen et al., 2024d; Zhao et al., 2024c) pipelines, we introduce a content-dependent (i.e., adaptive)
caching scheme to squeeze out the best quality-latency trade-off.
Content-adaptive Generationmay focus on improving consistency (Couairon et al., 2022; Bar-Tal et al., 2022;
Avrahami et al., 2022, 2023; Wang et al., 2023b; Xie et al., 2023), quality (Suin et al., 2024; Abu-Hussein et al.,
2022), and/or efficiency (Tang et al., 2023; Nitzan et al., 2024; Kahatapitiya et al., 2024; Starodubcev et al.,
2024). Most region-based methods (e.g. image or video editing) rely on a user-provided mask to ensue
consistent generations aligned with context information (Avrahami et al., 2023; Xie et al., 2023). Some others
automatically detect (Suin et al., 2024) or retrieve (Abu-Hussein et al., 2022) useful information to improve
generation quality. Among efficiency-oriented approaches, there exist proposals for selectively-processing
a subset of latents (Nitzan et al., 2024; Kahatapitiya et al., 2024), switching between diffusion models with
varying compute budgets (Starodubcev et al., 2024), or adaptively-controlling the number of denoising steps
(Tang et al., 2023; Wimbauer et al., 2024). AdaDiff (Tang et al., 2023) skips all subsequent computations
in a denoising step, if an uncertainty threshold is met at a certain layer. Block caching (Wimbauer et al.,
2024) introduces a caching schedule tailored for a given pretrained diffusion model. Both these handle image
generation tasks. In contrast, our proposed AdaCache— which also controls #denoising-steps adaptively—
provides better flexibility, and is applied to more-challenging video generation. It is flexible in the sense that
(1) it can selectively-cache any layer or even just a specific module within a layer, and (2) it is tailored to each
video generation instead of being fixed for a given architecture. Thus, AdaCache gains more control over the
diffusion process, enabling a better-adaptive compute allocation.

3 Not All Videos Are Created Equal

In this section, we motivate the need for a content-dependent denoising process, and show how it can help
maximize the quality-latency trade-off. This motivation is based on a couple of interesting observations which
we describe below.
First, we note that each video is unique. Hence, videos have varying levels of complexity. Here, the complexity
of a given video can be expressed by the rate-of-change of information across both space and time. Simpler
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Figure 2 Not all videos are created equal: We show frames from 720p - 2s video generations based on Open-Sora (Zheng
et al., 2024). (Left) We try to break each generation by reducing the number of diffusion steps. Interestingly, not all
videos have the same break point. Some sequences are extremely robust (e.g. first-two columns), while others break easily.
(Right) When we plot the difference between computed representations in subsequent diffusion steps, we see unique
variations (Feature distance vs. #steps). If we are to reuse similar representations, it needs to be tailored to each video.
Both these observations suggest the need for a content-dependent denoising process, which is the founding motivation of
Adaptive Caching. Best-viewed with zoom-in. Prompts given in supplementary.

videos may contain more homogeneous regions and/or static content. In contrast, complex videos have more
high-frequency details and/or significant motion. The standard video compression techniques exploit such
information to achieve the best possible compression ratios without sacrificing the quality (Wiegand et al.,
2003; Sullivan et al., 2012). Motivated by the same, we explore how the compute-cost affects the quality of
video generations based on DiTs. We measure this w.r.t. the number of denoising steps, and the observations
are shown in Fig. 2 (Left). Some video sequences are very robust, and achieve a reasonable quality even at
fewer denoising steps. Others break easily when we keep reducing the #steps, but the break-point varies.
This observation suggests that the minimal #steps (or, computations) required to generate a video with a
reasonable quality varies, and having a content-dependent denoising schedule can exploit this to achieve the
best speedups.

Figure 3 Videos generated at a capped-budget: There
exist different configurations for generating videos at
an approximately-fixed latency (e.g. having an arbitrary
#denoising-steps, yet only computing a fixed #represen-
tations and reusing otherwise). We observe a significant
variance in quality in such videos. Best-viewedwith zoom-
in. Prompts given in supplementary.

Next, we observe how the computed representations
(i.e., residual connections in attention or MLP blocks
within DiT) change during the denoising process,
across different video generations. This may reveal
the level of compute redundancy in each video gen-
eration, enabling us to reuse representations and
improve efficiency. More specifically, we visualize
the feature differences between subsequent diffusion
steps as histograms given in Fig. 2 (Right). Here,
we report Feature distance (e.g. L1) vs. #steps. We
observe that each histogram is unique. Despite hav-
ing higher changes in early/latter steps and smaller
changes in the middle, the overall distribution and
the absolute values vary considerably. A smaller
change corresponds to higher redundancy across sub-
sequent computations, and an opportunity for re-
using. This motivates the need for a non-uniform
compute-schedule not only within the diffusion pro-
cess of a given video (i.e., at different stages of denois-
ing), but also across different videos.
Finally, we evaluate the video generation quality at a
capped-budget (i.e., fixed computations or latency). We can have multiple generation configurations at an
approximately-fixed latency, by computing a constant number of representations. For instance, we can cache
and reuse representations more-frequently in a setup with more denoising steps, still having the same latency

4



of a process with fewer steps. The observations of a study with either 30 or 100 base denoising steps is shown
in Fig. 3. We see that the generation quality varies significantly despite spending a similar cost and having
the same underlying pretrained DiT. This motivates us to think about how best to allocate our resources at
inference, tailored for each video generation.

4 Adaptive Caching for Faster Video DiTs

Figure4 OverviewofAdaptiveCaching: (Left) During the diffusion process, we choose to cache residual computationswithin
selected DiT blocks. The caching schedule is content-dependent, as we decide when to compute the next representation
based on a distance metric (ct). This metric measures the rate-of-change from previously-computed (and, stored)
representation to the current one, and can be evaluated per-layer or the DiT as-a-whole. Each computed residual can be
cached and reused across multiple steps. (Right) We only cache the residuals (i.e., skip-connections) which amount to
the actual computations (e.g. spatial-temporal/cross attention, MLP). The iteratively denoised representation (i.e., ft+k,
ft) always gets updated either with computed or cached residuals.

4.1 Preliminaries: Video Diffusion Transformers

Video Diffusion Transformers are extended from Latent Diffusion Transformers (DiTs) (Peebles and Xie, 2023)
introduced for image generation. DiTs provide a much-more streamlined, scalable architecture compared
to prior UNet-based diffusion models (Rombach et al., 2022), by only having transformer blocks with a
homogeneous token resolution (instead of convolutional blocks with up/downsampling). A simplified
transformer block (i.e., w/o normalizing or timestep conditioning layers) in a video DiT is shown in Fig. 4
(right)— gray block. It consists of spatial-temporal attention (STA), cross-attention (CA) and linear (MLP)
layers. Depending on the implementation, STA may be a single joint spatio-temporal attention layer, or
separate spatial and temporal attention layers repeated within alternating blocks. Without loss of generality,
let us denote a latent feature at the input/output of such block by f l

t and f l+1
t , respectively. Here, l represents

the layer index, and t, the diffusion timestep. A simplified flow of computations within each block can be
represented as,

plt = STA(f l
t) ; f̃ l

t = f l
t + plt , (1)

qlt = CA(f̃ l
t) ; f̄ l

t = f̃ l
t + qlt , (2)

rlt = MLP(f̄ l
t) ; f l+1

t = f̄ l
t + rlt . (3)

Here plt, qlt and rlt are residual connections corresponding to each compute-element. Such computations
repeat through L layers, generating the noise prediction of each step t, and across a total of T denoising steps.
In the current streamlined video DiT architectures with homogeneous token resolutions, each layer of each
denoising step costs the same.
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4.2 Adaptive Caching

In this subsection, we introduceAdaptiveCaching (AdaCache), a training-freemechanism for content-dependent
compute allocation in video DiTs. The overview of Adaptive Caching is shown in Fig. 4. Compared to a
standard DiT that computes representations for all layers across all diffusion steps, in AdaCache, we decide
which layers or steps to compute, adaptively (i.e., dependent on each video being generated). This decision is
based on the rate-of-change in the residual connections (e.g. plt, qlt or rlt) across diffusion steps, which amount
to all significant computations within the DiT. Without loss of generality, let us assume that the residuals in
block l in current and immediately-prior diffusion steps t and t+ k are already computed. Here, step t+ k is
identified as ‘immediately-prior’ to step t since any residuals between these two steps are assumed to be not
computed (i.e., cached residuals are reused). We make a decision on the next computation step based on the
distance metric (clt) given by,

clt = dist(plt+k, p
l
t) = ∥plt − plt+k∥ / k . (4)

Here, we use L1 distance by default, but other distance metrics can also be applied (e.g. L2, cosine). Once we
have the distance metric, we select the next caching rate (τ lt) based on a pre-defined codebook of basis cache-
rates. Here, a ‘cache-rate’ is defined as the number subsequent steps during which, a previously-computed
representation is re-used (i.e., a higher cache-rate gives more compute savings). The codebook is basically
a collection of cache-rates defined based on the original denoising schedule (i.e., #steps), coupled with
corresponding metric thresholds to select them. Simply put, a higher distance metric will sample a lower
cache-rate from the codebook, resulting in more-frequent re-computations.

τ lt = codebook(clt) . (5)

For all denoising steps within t and t− τ , we reuse previously-cached representations and only recompute
after the current caching schedule (while also estimating the metric, again).

plt−k =

{
plt if k < τ lt ;

plt−k = STA(f l
t−k) if k = τ lt .

(6)

The same applies to other residual computations (e.g. qlt−k, rlt−k) as well. By design, we can have unique
caching schedules for each layer (and, each residual computation). However, we observe that it will make
the generations unstable. Therefore, we decide to have a common metric (i.e., clt = ct) and hence, a common
caching rate (i.e., τ lt = τt) across all DiT layers. For instance, we can consider an averaged metric across all
layers, or a metric computed at a certain layer to decide the caching schedule. Meaning, when we recompute
residuals in a certain step, we do so for the whole DiT rather than selectively for each layer.
Overall, this setup allows us to adaptively-control the compute spent on each video generation, based on
frame-wise information (i.e., no temporal information used as of yet). If the rate-of-change between residuals
is high, we will have a smaller caching rate, and otherwise, we have a higher rate. The choice of a lightweight
distance metric (e.g. L1) helps us avoid any additional latency overheads.

4.3 Motion Regularization

To further improve Adaptive Caching by making use of video-specific (i.e., temporal) information, we
introduce a Motion Regularization (MoReg). This is motivated by the observation that the optimal number of
denoising steps varies based on the motion content of each generated video. The core idea here, is to cache
less (i.e., recompute more) if a generated video has a high motion content. Simply put, we plan to regularize
our caching schedule based on motion. However the problem is that, we need to estimate motion while the
video is still being generated. Therefore, we can not rely on motion estimation algorithms in the pixel space,
nor any compute-heavy ones as our focus is on efficiency. As a result, we estimate a noisy latent motion-score
(ml

t) based on residual frame differences. Without loss of generality, let us denote residual latent frames of
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plt as {plt, n | n = 0, · · · , N − 1}where N is the #frames in latent space (generated by the VAE encoder). We
estimate the motion-score as,

ml
t = ∥plt, i:N − plt, 0:N−i∥ . (7)

Here, i denotes the frame step-size (or, frame-rate), ∥ · ∥, the distance metric (e.g. L1), and i : j, the slice of all
frames within the corresponding range. However, since we operate on noisy-latents, we observe that our
motion estimate, particularly in early diffusion steps is not reliable. Meaning, it does not provide a reasonable
regularization in early steps (i.e., the change in caching schedule does not correlate well with the observed
motion in pixel space). To alleviate this, we also compute a motion-gradient (mglt) across diffusion steps,
which can act as a reasonable early-predictor of motion that we may observe in latter diffusion steps (that
also correlates with the motion in pixel space).

mglt = (ml
t −ml

t+k) / k . (8)

Despite the motion-score being noisy, the motion-gradient acts as a better-estimate of trend, as the representa-
tions are getting denoised and converging to a noise-free distribution. Finally, we use both motion-score and
motion-gradient as a scaling-factor of the distance metric (clt) to regularize our caching schedule.

clt = clt · (ml
t +mglt) . (9)

This means, when we have a higher estimated motion, the distance metric will be increased and a smaller
basis cache-rate will be selected from the codebook. As previously discussed, we also enforce a common
motion-regularization in all DiT layers by computing a common motion score (i.e., ml

t = mt, mglt = mgt),
ensuring the stability of the denoising process. We can also choose to compute motion at different frame-rates,
which we ablate in our experiments. Refer to the supplementary for concrete examples of motion-score and
motion-gradient (Fig. A.1).

5 Experiments

5.1 Implementation details

We select multiple prominent open-source video DiTs as backbone video generation pipelines in our experi-
ments, namely, Open-Sora-v1.2 (Zheng et al., 2024), Open-Sora-Plan-v1.1 (Lab and etc., 2024) and Latte (Ma
et al., 2024b). Since we focus on inference-based latency optimizations (i.e., without any re-training), we
compare AdaCache against similar methods such as∆-DiT (Chen et al., 2024d), T-GATE (Zhang et al., 2024a)
and PAB (Zhao et al., 2024c). In our main experiments, we generate 900+ videos based on standard VBench
(Huang et al., 2024) benchmark prompts at the corresponding generation settings of each baseline (e.g. 480p -
2s with 30-steps in Open-Sora, 512×512 - 2.7s with 150-steps in Open-Sora-Plan and 512×512 - 2s with 50-steps
in Latte) measuring multiple quality-complexity metrics. We report VBench average and reference-based
PSNR, SSIM and LPIPS as quality metrics, and also report FLOPs, Latency (s) and Speedup as complexity
metrics. Here, Latency is measured on a single A100 GPU. Unless otherwise stated, in our ablations and
qualitative results, we experiment on the prompts from Open-Sora benchmark gallery, generating 720p - 2s
videos with 100-steps.

5.2 Main results

In Table 1, we present a quantitative evaluation of quality and latency on VBench (Huang et al., 2024)
benchmark. We consider three variants of AdaCache: a slow variant, a fast variant with more speedup and
the same with motion regularization. We compare with other training-free acceleration methods, showing
consistently better speedups with a comparable generation quality. With Open-Sora (Zheng et al., 2024)
baseline, AdaCache-slow outperforms others on all quality metrics, while giving a 1.46× speedup compared
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Table 1 Quantitative evaluation of quality and latency: Here, we compare AdaCache with other training-free DiT acceleration
methods (e.g. ∆-DiT (Chen et al., 2024d), T-GATE (Zhang et al., 2024a), PAB (Zhao et al., 2024c)) on mutliple video
baselines (e.g. Open-Sora (Zheng et al., 2024) 480p - 2s at 30-steps, Open-Sora-Plan (Lab and etc., 2024) 512×512 - 2.7s at
150-steps, Latte (Ma et al., 2024b) 512×512 - 2s at 50-steps). We measure the generation quality with VBench (Huang
et al., 2024), PSNR, LPIPS and SSIM, while reporting complexity with FLOPs, latency and speedup (measured on a
single A100 GPU). AdaCache-fast consistently shows the best speedups at a comparable or slightly-lower generation
quality. AdaCache-slow gives absolute-best quality while still being faster than prior methods. Our motion-regularization
significantly improves the generation quality consistently, with a minimal added-latency.

Method VBench (%) ↑ PSNR ↑ LPIPS ↓ SSIM ↑ FLOPs (T) Latency (s) Speedup
Open-Sora (Zheng et al., 2024) 79.22 – – – 3230.24 54.02 1.00×
+∆-DiT (Chen et al., 2024d) 78.21 11.91 0.5692 0.4811 3166.47 – –
+ T-GATE (Zhang et al., 2024a) 77.61 15.50 0.3495 0.6760 2818.40 49.11 1.10×
+ PAB-fast (Zhao et al., 2024c) 76.95 23.58 0.1743 0.8220 2558.25 40.23 1.34×
+ PAB-slow (Zhao et al., 2024c) 78.51 27.04 0.0925 0.8847 2657.70 44.93 1.20×
+ AdaCache-fast 79.39 24.92 0.0981 0.8375 1331.97 24.16 2.24×
+ AdaCache-fast (w/ MoReg) 79.48 25.78 0.0867 0.8530 1383.66 25.71 2.10×
+ AdaCache-slow 79.66 29.97 0.0456 0.9085 2195.50 37.01 1.46×
Open-Sora-Plan (Lab and etc., 2024) 80.39 – – – 12032.40 129.67 1.00×
+∆-DiT (Chen et al., 2024d) 77.55 13.85 0.5388 0.3736 12027.72 – –
+ T-GATE (Zhang et al., 2024a) 80.15 18.32 0.3066 0.6219 10663.32 113.75 1.14×
+ PAB-fast (Zhao et al., 2024c) 71.81 15.47 0.5499 0.4717 8551.26 89.56 1.45×
+ PAB-slow (Zhao et al., 2024c) 80.30 18.80 0.3059 0.6550 9276.57 98.50 1.32×
+ AdaCache-fast 75.83 13.53 0.5465 0.4309 3283.60 35.04 3.70×
+ AdaCache-fast (w/ MoReg) 79.30 17.69 0.3745 0.6147 3473.68 36.77 3.53×
+ AdaCache-slow 80.50 22.98 0.1737 0.7910 4983.30 58.88 2.20×
Latte (Ma et al., 2024b) 77.40 – – – 3439.47 32.45 1.00×
+∆-DiT (Chen et al., 2024d) 52.00 8.65 0.8513 0.1078 3437.33 – –
+ T-GATE (Zhang et al., 2024a) 75.42 19.55 0.2612 0.6927 3059.02 29.23 1.11×
+ PAB-fast (Zhao et al., 2024c) 73.13 17.16 0.3903 0.6421 2576.77 24.33 1.33×
+ PAB-slow (Zhao et al., 2024c) 76.32 19.71 0.2699 0.7014 2767.22 26.20 1.24×
+ AdaCache-fast 76.26 17.70 0.3522 0.6659 1010.33 11.85 2.74×
+ AdaCache-fast (w/ MoReg) 76.47 18.16 0.3222 0.6832 1187.31 13.20 2.46×
+ AdaCache-slow 77.07 22.78 0.1737 0.8030 2023.65 20.35 1.59×

to PAB (Zhao et al., 2024c) with 1.20× speedup. AdaCache-fast gives the highest acceleration of 2.24× with
a slight drop in quality. AdaCache-fast (w/ MoReg) shows a clear improvement in quality compared to
AdaCache-fast, validating the effectiveness of our regularization and giving a comparable speedup of 2.10×.
All AdaCache variants outperform even the baseline (w/o any acceleration) on VBench average quality,
which aligns better with human preference compared to other reference-based metrics. Similar observations
hold with the other baselines as well. With Open-Sora-Plan (Lab and etc., 2024), AdaCache shows the best
speedup of 3.70× compared to the previous-best 1.45× of PAB, and the best quality with a 2.20× speedup.
With Latte (Ma et al., 2024b), we gain the best speedup of 2.74× compared to prior 1.33×, and the best overall
quality with a 1.59× speedup.

Figure 5 User study: We collect human preferences,
comparing AdaCache with PAB (Zhao et al., 2024c)
(left) and evaluating our motion regularization (right).
AdaCache shows a significantly-higher preference-rate
over PAB at a comparable latency. Our motion- regu-
larized variant is better-preferred, yet often tied with
AdaCache in terms of perceived quality.

User study: Quantitative metrics on video generation
quality can sometimes fall-short in aligning with the
perceived visual quality. To better understand the hu-
man preference on AdaCache and its comparisons, we
conduct a user study in the form of randomized A/B
preference tests. Here, we create a questionnaire with
50 multiple-choice questions, each consisting of 3 vari-
ants of a single video sequence: the baseline, and two
efficient generations in a randomized order (comparing
either AdaCache vs. PAB (Zhao et al., 2024c) at a similar
speedup, or AdaCache vs. AdaCache w/ MoReg). We
ask the users which efficient variant shows a better qual-
ity, and whether it is aligned with (i.e., indistinguishable
from) the baseline. We collect a total of 1800 responses
from 36 different users, and the results of the study are
given in Fig. 5. Between AdaCache and PAB, we see
a clear win for our method (70%) while being extremely-similar to the baseline more than half the time

8



Figure 6 Quality-Latency trade-off: We show quality vs. latency curves for different configurations of AdaCache and PAB
(Zhao et al., 2024c), with Open-Sora (Zheng et al., 2024) 720p - 2s generations. AdaCache outperforms PAB consistently,
showing a more-stable performance while reducing latency. This stability is more-prominent in reference-free metric
VBench (Huang et al., 2024) compared to reference-based metrics, validating that AdaCache generations are aligned with
human preference even at its fastest speeds, despite not being exactly-aligned with the reference.

Figure7 ImpactofMotionRegularizationonAdaptiveCaching: We show a qualitative comparison of AdaCache andAdaCache
(w/ MoReg), applied on top of Open-Sora (Zheng et al., 2024) baseline. Here, we consider generation of 720p - 2s clips at
100-steps. Despite giving a 4.7× speedup, AdaCache can also introduce some inconsistencies over time (e.g. artifacts,
motion, color). Motion Regularization helps avoid most of them by allocating more computations proportional to the
amount of motion (while still giving a 4.5× speedup). Best-viewed with zoom-in. Prompts and more visualizations (see
Fig. A.2) are given in supplementary.

(41%). Among AdaCache variants, users find these to be often tied (60%) in-terms of perceived quality, yet
still showing a better preference for motion-regularized variant (25% vs. 14%). This study validates the
effectiveness of Adaptive Caching.

5.3 Ablation study

Quality-Latency trade-off: In Fig. 6, we compare the quality-latency trade-off of AdaCache with PAB (Zhao
et al., 2024c). First, we note that AdaCache enables significantly higher reduction rates (i.e., much-smaller
absolute latency) compared to PAB. Moreover, across this whole range of latency configurations, AdaCache
gives a more-stable performance over PAB, on all quality metrics. Such behavior is especially evident in
reference-free metric VBench (Huang et al., 2024), that aligns better with human preference. Even if we see a
drop in reference-based scores (e.g. PSNR, SSIM) at extreme reduction rates, the qualitative results suggest
that the generations are still good (see Fig. 1), despite not being aligned exactly with the reference.
AdaCache withMotion Regularization: We compare AdaCache with different versions of motion regularization
in Table 3a. Both vanilla and motion-regularized versions provide significant speedups, 4.7× and 4.5×
respectively, at a comparable quality with baseline Open-Sora (Zheng et al., 2024). Considering motion-
gradient as an early-predictor of motion at latter diffusion steps helps (83.50 vs. 83.36 on VBench). We also
estimate motion at different frame-rates by considering a varying step-size in frame differences, which seems
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Method Latency (s) (speedup)

1GPU 2GPU 4GPU 8GPU
Open-Sora 54.02 (1.00×) 29.28 (1.84×) 18.08 (2.99×) 12.95 (4.17×)
+ PAB 40.23 (1.34×) 20.77 (2.60×) 13.63 (3.96×) 10.31 (5.24×)
+ AdaCache 24.16 (2.24×) 14.02 (3.85×) 9.56 (5.65×) 7.78 (6.94×)

Open-Sora-Plan 129.67 (1.00×) 79.67 (1.63×) 47.86 (2.71×) 33.34 (3.89×)
+ PAB 89.56 (1.45×) 54.87 (2.36×) 34.29 (3.78×) 24.21 (5.36×)
+ AdaCache 35.04 (3.70×) 22.49 (5.77×) 16.54 (7.84×) 14.07 (9.22×)

Figure 8 & Table 2 Acceleration in multi-GPU setups: We evaluate the speedups with varying GPU parallelization, as
cached-steps can avoid communication overheads among GPUs. Here, we compare AdaCache with PAB (Zhao et al.,
2024c), on baselines Open-Sora (Zheng et al., 2024) 480p - 2s generations at 30-steps and Open-Sora-Plan (Lab and
etc., 2024) 512×512 - 2.7s generations at 150-steps. (Left) AdaCache consistently shows better acceleration over PAB in
all settings. (Right) When compared with baselines of similar parallelization, the additional speedup from AdaCache
increases with more GPUs. All latency measurements are on A100 GPUs.

Table 3 Ablation study: We evaluate different design decisions of AdaCache on Open-Sora (Zheng et al., 2024) benchmark
prompts, reporting VBench (Huang et al., 2024) scores (%), latency (s) and speedup. Here, we consider 32 videos
generated with 100 diffusion steps, and use VBench custom dataset evaluation.
(a) AdaCache with Motion Regularization: We show different
variants of AdaCache. All versions achieve significant speedups
compared to the baseline. AdaCache + MoReg shows a better
quality with a slightly-lower speedup.

Method VBench Latency Speedup
Open-Sora (Zheng et al., 2024) 84.16 419.60 1.0×
+ AdaCache 83.40 89.53 4.7×
+ AdaCache + MoReg 83.50 93.50 4.5×
+ AdaCache + MoReg (w/o grad) 83.36 89.01 4.7×
+ AdaCache + MoReg (multi-step) 83.42 95.65 4.4×

(b) Speedups at different resolutions: We compare
AdaCache with baselines at different resolutions. It
generalizes across resolutions, consistently providing
a stable acceleration.

Resolution AdaCache VBench Latency Speedup

480p - 2s ✗ 83.68 173.84 1.0×
✓ 83.18 38.52 4.5×

480p - 4s ✗ 82.77 349.90 1.0×
✓ 82.16 80.16 4.4×

720p - 2s ✗ 84.16 419.60 1.0×
✓ 83.40 89.53 4.7×

(c) Cache metric: Among
distance metrics, L1/L2
have similar (and better)
performance in-contrast to
cosine distance.

Distance VBench Latency
L1 83.40 89.53
L2 83.50 92.70
Cosine 83.19 86.74

(d) Cache location: We
compute the cache met-
ric at mid-DiT, resulting
in the best quality-latency
trade-off.

Location VBench Latency
Start 83.30 87.55
Mid 83.40 89.53
End 83.43 91.20
Multiple 83.41 90.27

(e) Cache residual: We
consider different resid-
ual computations to esti-
mate cache metric. Our
default is Temp-attn.

Residual VBench Latency
pt (TA) 83.40 89.53
pt (SA) 83.19 89.06
qt (CA) 83.25 90.70
rt (MLP) 83.62 99.72

(f) AdaCache Variants: We achieve
a range of speedups (and quality)
by controlling the basis cache-rates
in AdaCache. Our default setting is
AdaCache-fast.

AdaCache Basis-rates VBench Latency
Fast {12, 10, 8, 6, 4, 3} 83.40 89.53
Medium {8, 6, 4, 2, 1} 83.94 143.87
Slow {2, 1} 84.12 274.30

to increase the latency without necessarily improving quality. Overall, we consider AdaCache (w/ MoReg)
as the configuration with the best quality-latency trade-off. This improvement in quality is more-prominent
in qualitative examples shown in Fig. 7, Fig. A.2 and the benchmark comparison in Table 1.
Acceleration in multi-GPU setups: Aligned with prior work that relies on Dynamic Sequence Parallelism (DSP)
(Zhao et al., 2024b) to support high-resolution long-video generation across multiple GPUs, we evaluate how
AdaCache performs in such scenarios. This evaluation is relevant in the context of efficiency, as DSP incurs
additional latency overheads corresponding to the communication between GPUs, and caching mechanisms
can avoid such costs by re-using previous computations. We present the results of this study in Fig. 8 and
Table 2. Here, we consider Open-Sora (Zheng et al., 2024) (480p - 2s at 30-steps) and Open-Sora-Plan (Lab and
etc., 2024) (512×512 - 2.7s at 150-steps) as baselines, and compare against prior-art PAB (Zhao et al., 2024c) in
terms of latencymeansurements on A100 GPUs. In Fig. 8, we observe that AdaCache consistently outperforms
PAB with better inference speeds across all settings. In Table 2, we further compare our method with the
corresponding baselines with similar GPU parallelization. We observe that the additional speedup due to
AdaCache increases with more GPUs, verifying the impact of caching on GPU communication overhead.
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Figure 9 Qualitative comparison: We show qualitative results on multiple video-DiT baselines including Open-Sora (Zheng
et al., 2024) (720p - 2s at 100-steps), Open-Sora-Plan (Lab and etc., 2024) (512×512 - 2.7s at 150-steps) and Latte (Ma
et al., 2024b) (512×512 - 2s at 50-steps), while comparing against prior training-free inference acceleration method PAB
(Zhao et al., 2024c). AdaCache shows a comparable generation quality at much-faster speeds. Best-viewed with zoom-in.
Prompts and additional qualitative results (Fig. A.3) are given in supplementary.

Speedups at different resolutions: In Table 3b, we compare the trade-offs of AdaCache at various resolutions of
video generations, namely, 480p - 2s, 480p - 4s and 720p - 2s, all at 100-steps. AdaCache provides consistent
speedups across different resolutions without affecting the quality.
Cache metric, location and residual: When adaptively deciding the caching schedule, we consider different
metrics to compute the rate-of-change between representations, namely, L1/L2 distance or cosine distance.
Among these, L1/L2 give an absolute measure which aligns better with the actual change. In contrast, cosine
computes a normalized-distance, which is not a good estimate of change (e.g. if the representations differ
only by a scale, the distance will be zero, even though we want to have a non-zero value). This observation is
verified by the results in Table 3c. Moreover, we consider computing the cache metric at various locations (i.e.,
layers) in the DiT. Doing so at a single layer (e.g. start, mid, end) is not significantly different from computing
an aggregate over multiple-layers (see Table 3d). By default, we compute the cache metric in the mid-layer as
a reasonable choice without extra overheads. As for the choice of residual to be used for the cache metric
computation, we resort to temporal-attention as it achieves the best trade-off (see Table 3e).
AdaCache variants: To achieve a range of speedups (and quality), we consider different basis cache-rates
in our AdaCache implementation. For instance, we can have higher-speedup with a slightly-lower quality
(e.g. AdaCache-fast), a lower-speedup with a higher-quality (e.g. AdaCache-slow), or balance both (e.g.
AdaCache-medium). We can conveniently control this by having corresponding basis cache-rates as shown
in Table 3f. By defualt, we resort to AdaCache-fast which gives the best speedups.
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5.4 Qualitative results

In Fig. 9, we present qualitative results on mutliple video DiT baselines, including Open-Sora (Zheng et al.,
2024), Open-Sora-Plan (Lab and etc., 2024) and Latte (Ma et al., 2024b). We compare AdaCache against
each baseline and prior training-free inference acceleration method for video DiTs, PAB (Zhao et al., 2024c).
Here, we consider three different configurations: 720p - 2s generations at 100-steps for Open-Sora, 512×512 -
2.7s generations at 150-steps for Open-Sora-Plan, and 512×512 - 2s generations at 50-steps for Latte, while
considering prompts from Open-Sora gallery (see supplementary for prompt details). AdaCache shows
a comparable generation quality, while having much-faster inference pipelines. In fact, it achieves 4.49×
(vs. 1.26× in PAB), 3.53× (vs. 1.45× in PAB), 2.46× (vs. 1.33× in PAB) speedups respectively on the three
considered baseline video DiTs. In most cases our generations are aligned well with the baseline in the pixel
space. Yet this is not a strict requirement, as the denoising process can deviate considerably from that of the
baseline, particularly at high caching rates. Still, AdaCache is faithful to the text prompt and is not affected by
significant artifacts. Refer Fig. A.3 for additional qualitative comparisons.

6 Conclusion

In this paper, we introduced Adaptive Caching (AdaCache), a plug-and-play component that improves the
the inference speed of video diffusion transformers without needing any re-training. It caches residual
computations, while also devising the caching schedule dependent on each video generation. We further
proposed a Motion Regularization (MoReg) to utilize video information and allocate computations based
on motion content, improving the quality-latency trade-off. We apply our contributions on multiple open-
source video DiTs, showing comparable generation quality at a fraction of latency. We believe AdaCache is
widely-applicable with minimal effort, helping democratize high-fidelity long-video generation.
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A Appendix

Figure A.1 Change inmotion-score andmotion-gradient across steps: We show the histograms of Motion Regularization
metrics (namely, motion-score and motion-gradient) across diffusion steps. Here, motion-score is estimated as latent
frame-differences, which correlates well with the perceived motion of a given video sequence. However, it can be
unreliable in early denoising steps as such latent representations are noisy. To predict the actual motion (i.e., motion in
latter steps ≈motion in pixel space) early, we rely on motion-gradient across diffusion steps. Together, motion-score and
motion-gradient provide a reasonable regularization. Best-viewed with zoom-in. Prompts given in supplementary.

A.1 Design decisions

Motion-score andmotion-gradient: We rely on two metrics in our Motion regularization: namely, motion-score
(mt) and motion-gradient (mgt). As previously-discussed, motion-score can be unreliable particularly in
early diffusion steps as it is estimated based on noisy-latents. For instance, in videos with higher motion
content, our motion-score often starts small and gradually increases towards the end of diffusion process
(see the two rightmost columns in Fig. A.1). In slow-moving videos, motion-score can start higher can
converge to a smaller value (see the leftmost column in Fig. A.1). Simply put, we need a predictor of actual
motion (i.e., motion in latter steps ≈motion in pixel space) early in the diffusion process for a proper caching
regularization. Therefore, we compute a motion-gradient across diffusion-steps, which can act as such a
reasonable predictor (orange bars in Fig. A.1). Together, motion-score and motion-gradient regularize the
caching schedule, allocating computations based on the motion content of the video being generated.
Codebook of basis cache-rates: We devise our caching schedule based on a pre-defined codebook of basis
cache-rates. It is a collection of cache-rates that is specific to a denoising schedule (i.e., #steps), coupled with
distance metric (ct) thresholds for selection. Both basis cache-rates and thresholds are hyperparameters. Here,
optimal thresholds may need to be tuned per video-DiT baseline, whereas the cache-rates can be adjusted
depending on the required speedup (e.g. AdaCache-fast, AdaCache-slow). For instance, on Open-Sora
Zheng et al. (2024) baseline, we use the codebook {0.08: 6, 0.16: 5, 0.24: 4, 0.32: 3, 0.40: 2, 1.00: 1}
for AdaCache-fast in a 30-step denoising schedule, and the codebook {0.03: 12, 0.05: 10, 0.07: 8, 0.09: 6,
0.11: 4, 1.00: 3} in a 100-step schedule. For AdaCache-slow in a 30-step schedule, we use the codebook
{0.08: 3, 0.16: 2, 0.24: 1.00: 1}. A specific cache-rate is selected if the distance metric is smaller than the
corresponding threshold (and larger than any previous thresholds).

A.2 Additional qualitative results

In Fig. A.2, we provide additional qualitative results, comparing AdaCache and AdaCache (w/ MoReg)
with a baseline Open-Sora (Zheng et al., 2024). Here, we consider 480p - 2s video generations at 30-steps,
based on a few VBench (Huang et al., 2024) prompts. Both versions with and without motion regularization
achieve comparable speedups (2.10× and 2.24×, respectively). Yet, MoReg helps stabilize the generation
quality— especially towards the end-of-sequence in long-videos— by allocating computations proportional
to the amount of motion. The generations with motion regularization also follow the corresponding baseline
generations more-faithfully. In Fig. A.3, we present additional qualitative comparisons with prior-art at a
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Figure A.2 Additional qualitative results on ourMotion Regularization: We show a qualitative comparison of AdaCache and
AdaCache (w/ MoReg), applied on top of Open-Sora (Zheng et al., 2024) baseline. Here, we consider generation of 480p -
2s clips at 30-steps. Despite giving a 2.24× speedup, AdaCache can also introduce some inconsistencies over time. Our
Motion Regularization helps avoid most of them by allocating computations proportional to the amount of motion (still
giving a 2.10× speedup). Best-viewed with zoom-in. Prompts given in supplementary.

comparable inference speedup. Here, we consider 720p - 2s video generations at 100-steps, based on a few
Sora (OpenAI, 2024) prompts. Our comparison includes PAB (Zhao et al., 2024c): another training-free
video-DiT acceleration method. AdaCache consistently shows a better generation quality at a 2.61× speedup,
compared to PAB, even at a 1.66× speedup. This behavior is also observed in Fig. 6, as the generation quality
of PAB degrades quickly at faster speeds.

A.3 Text prompts used in qualitative examples

In this subsection, we provide all the prompts used to generate the qualitative results shown in the paper.
They consist of prompts from multiple sources including Open-Sora (Zheng et al., 2024) gallery, VBench
(Huang et al., 2024) benchmark and Sora (OpenAI, 2024), all of which are publicly-available.
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Figure A.3 Additional qualitative comparisons with prior-art: We show qualitative comparisons with prior-art on baseline
Open-Sora (Zheng et al., 2024) (720p - 2s at 100-steps). Here, we evaluate against prior training-free inference acceleration
method PAB (Zhao et al., 2024c) at a comparable speedup. AdaCache consistently shows a better generation quality.
Best-viewed with zoom-in. Prompts given in supplementary.

Text prompts corresponding to the video generations in Fig. 1:
• A Japanese tram glides through the snowy streets of a city, its sleek design cutting through the falling

snowflakes with grace. The tram’s illuminated windows cast a warm glow onto the snowy surroundings,
creating a cozy atmosphere inside. Snowflakes dance in the air, swirling around the tram as it moves along
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its tracks. Outside, the city is blanketed in a layer of snow, transforming familiar streets into a winter
wonderland. Cherry blossom trees, now bare, stand quietly along the tram tracks, their branches dusted
with snow. People hurry along the sidewalks, bundled up against the cold, while the tram’s bell rings softly,
announcing its arrival at each stop.

• a picturesque scene of a tranquil beach at dawn. the sky is painted in soft pastel hues of pink and orange,
reflecting on the calm, crystal-clear water. gentle waves lap against the sandy shore, where a lone seashell
lies near the water’s edge. the horizon is dotted with distant, low-lying clouds, adding depth to the serene
atmosphere. the overall mood of the video is peaceful and meditative, with no text or additional objects
present. the focus is on the natural beauty and calmness of the beach, captured in a steady, wide shot.

• a bustling night market scene with vibrant stalls on either side selling food and various goods. the camera
follows a person walking through the crowded, narrow alley. string lights hang overhead, casting a warm,
festive glow. people of all ages are talking, browsing, and eating, creating an atmosphere full of lively energy.
occasional close-ups capture the details of freshly cooked dishes and colorful merchandise. the video is dynamic
with a mixture of wide shots and close-ups, capturing the essence of the night market without any text or
sound.

• a dynamic aerial shot showcasing various landscapes. the sequence begins with a sweeping view over a dense,
green forest, transitioning smoothly to reveal a winding river cutting through a valley. next, the camera rises
to capture a panoramic view of a mountain range, the peaks dusted with snow. the shot shifts to a coastal
scene, where waves crash against rugged cliffs under a partly cloudy sky. finally, the aerial view ends over a
bustling cityscape, with skyscrapers and streets filled with motion and life. the video does not contain any
text or additional overlays.

• a cozy living room scene with a christmas tree in the corner adorned with colorful ornaments and twinkling
lights. a fireplace with a gentle flame is situated across from a plush red sofa, which has a few wrapped presents
placed beside it. a window to the left reveals a snowy landscape outside, enhancing the festive atmosphere.
the camera slowly pans from the window to the fireplace, capturing the warmth and tranquility of the room.
the soft glow from the tree lights and the fire illuminates the room, casting a comforting ambiance. there are
no people or text in the video, focusing purely on the holiday decor and cozy setting.

Text prompts corresponding to new video generations in Fig. 2:
• a breathtaking aerial view of a river meandering through a lush green landscape. the river, appearing as a

dark ribbon, cuts through the verdant fields and hills, reflecting the soft light of the pinkish-orange sky. the
sky, painted in hues of pink and orange, suggests the time of day to be either sunrise or sunset. the landscape
is dotted with trees and bushes, adding to the natural beauty of the scene. the perspective of the video is
from above, providing a bird’s eye view of the river and the surrounding landscape. the colors , the river, the
landscape, and the sky all come together to create a serene and picturesque scene.

• A cozy living room, surrounded by soft cushions and warm lighting. Describe the scene in vivid detail,
capturing the feeling of comfort and relaxation.

• a nighttime scene in a bustling city filled with neon lights and futuristic architecture. the streets are crowded
with people, some dressed in high-tech attire and others in casual cyberpunk fashion. holographic advertise-
ments and signs illuminate the area in vibrant colors, casting a glow on the buildings and streets. futuristic
vehicles and motorcycles are speeding by, adding to the city’s dynamic atmosphere. in the background, tow-
ering skyscrapers with intricate designs stretch into the night sky. the scene is filled with energy, capturing
the essence of a cyberpunk world.

• a close-up shot of a vibrant coral reef underwater. various colorful fish swim leisurely around the corals,
creating a lively scene. the lighting is natural and slightly subdued, emphasizing the deep-sea environment.
soft waves ripple across the view, occasionally bringing small bubbles into the frame. the background fades
into a darker blue, suggesting deeper waters beyond. there are no texts or human-made objects visible in the
video.

• a neon-lit cityscape at night, featuring towering skyscrapers and crowded streets. the streets are bustling with
people wearing futuristic attire, and vehicles hover above in organized traffic lanes. holographic advertisements
are projected onto buildings, illuminating the scene with vivid colors. a light rain adds a reflective sheen to
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the ground, enhancing the cyberpunk atmosphere. the camera pans slowly through the scene, capturing the
energy and technological advancements of the city. the video does not contain any text or additional objects.

• a breathtaking view of a mountainous landscape at sunset. the sky is painted with hues of orange and
pink, casting a warm glow over the scene. the mountains, bathed in the soft light, rise majestically in the
background, their peaks reaching towards the sky. in the foreground, a woman is seated on a rocky outcrop,
her body relaxed as she takes in the vie w. she is dressed in a black dress and boots, her attire contrasting
with the natural surroundings. her position on the rock provides a vantage point over a river that meanders
through the valley below. the river, a ribbon of blue, winds its way through the landscape, adding a dynamic
element to the scene. the woman’s gaze is directed towards the river, suggesting a sense of contemplation or
admiration for the beauty of nature. the video is taken from a high angle, looking down on the woman and
the landscape. this perspective enhances the sense of depth and scale in the image, emphasizing the vastness
of the mountains and the river.

• an animated scene featuring a young girl with short black hair and a bow tie, seated at a wooden desk in a
warmly lit room. natural light filters through a window, illuminating the girl’s wide eyes and open mouth,
conveying a sense of surprise or shock. she is dressed in a blue shirt with a white collar and dark vest. the
room’s inviting atmosphere is complemented by wooden furniture and a framed picture on the wall. the
animation style is reminiscent of japanese anime, characterized by vibrant colors and expressive character
designs.

Text prompts corresponding to new video generations in Fig. 7:
• a breathtaking aerial view of a misty mountain landscape at sunrise. the sun is just beginning to peek over

the horizon, casting a warm glow on the scene. the mountains, blanketed in a layer of fog, rise majestically in
the background. the mist is so dense that it obscures the peaks of the mountains, adding a sense of mystery
to the scene. in the foregro und, a river winds its way through the landscape, its path marked by the dense
fog. the river appears calm, its surface undisturbed by the early morning chill. the colors in the video are
predominantly cool, with the blue of the sky and the green of the trees contrasting with the warm orange of
the sunrise. the video is taken from a high vantage point, p roviding a bird’s eye view of the landscape. this
perspective allows for a comprehensive view of the mountains and the river, as well as the fog that envelops
them. the video doe s not contain any text or human activity, focusing solely on the natural beauty of the
landscape. the relative positions of the objects suggest a vast, untouched wilderness.

• a 3d rendering of a female character with curly blonde hair and striking blue eyes. she is wearing a black
tank top and is standing in front of a fiery backdrop. the character is looking off to the side with a serious
expression on her face. the background features a fiery orange and red color scheme, suggesting a volcanic or
fiery environment. the lighting in the scene is dramatic, with the character’s face illuminated by a soft light
that contrasts with the intense colors of the background. there are no texts or other objects in the image.
the style of the image is realistic with a high level of detail, indicative of a high-quality 3d rendering.

Text prompts corresponding to new video generations in Fig. 3:
• a realistic 3d rendering of a female character with curly blonde hair and blue eyes. she is wearing a black tank

top and has a neutral expression while facing the camera directly. the background is a plain blue sky, and
the scene is devoid of any other objects or text. the character is detailed, with realistic textures and lighting,
suitable for a video game or high-quality animation. there is no movement or additional action in the video.
the focus is entirely on the character’s appearance and realistic rendering.

Text prompts corresponding to new video generations in Fig. 9:
• a scenic shot of a historical landmark. the landmark is an ancient temple with tall stone columns and intricate

carvings. the surrounding area is lush with greenery and vibrant flowers. the sky above is clear and blue,
with the sun casting a warm glow over the scene. tourists can be seen walking around, taking pictures and
admiring the architecture. there is no text or additional objects in the video.

• a vibrant cyberpunk street scene at night. neon signs and holographic advertisements illuminate the narrow
street, casting colorful reflections on the rain-slicked pavement. various characters, dressed in futuristic attire,
move along the sidewalks while robotic street vendors sell their wares. towering skyscrapers with glowing
windows dominate the background, creating a sense of depth. the camera takes a wide-angle perspective,
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capturing the bustling and lively atmosphere of the cyberpunk cityscape. there are no texts or other objects
outside of the described scene.

Text prompts corresponding to new video generations in Fig. A.2:
• A cute happy Corgi playing in park, sunset, surrealism style

• An astronaut is riding a horse in the space in a photorealistic style.

• A panda playing on a swing set

• a backpack and an umbrella

• a black vase

• a shark is swimming in the ocean, Van Gogh style

• A teddy bear washing the dishes

• A tranquil tableau of a peaceful orchid garden showcased a variety of delicate blooms

• A tranquil tableau of the phone booth was tucked away in a quiet alley

Text prompts corresponding to new video generations in Fig. A.3:
• A gorgeously rendered papercraft world of a coral reef, rife with colorful fish and sea creatures.

• This close-up shot of a Victoria crowned pigeon showcases its striking blue plumage and red chest. Its crest
is made of delicate, lacy feathers, while its eye is a striking red color. The bird’s head is tilted slightly to the
side, giving the impression of it looking regal and majestic. The background is blurred, drawing attention to
the bird’s striking appearance.

• This close-up shot of a chameleon showcases its striking color changing capabilities. The background is blurred,
drawing attention to the animal’s striking appearance.

• a green blob and an orange blob are in love and dancing together

• New York City submerged like Atlantis. Fish, whales, sea turtles and sharks swim through the streets of New
York.

• nighttime footage of a hermit crab using an incandescent lightbulb as its shell

• A large orange octopus is seen resting on the bottom of the ocean floor, blending in with the sandy and rocky
terrain. Its tentacles are spread out around its body, and its eyes are closed. The octopus is unaware of a king
crab that is crawling towards it from behind a rock, its claws raised and ready to attack. The crab is brown
and spiny, with long legs and antennae. The scene is captured from a wide angle, showing the vastness and
depth of the ocean. The water is clear and blue, with rays of sunlight filtering through. The shot is sharp
and crisp, with a high dynamic range. The octopus and the crab are in focus, while the background is slightly
blurred, creating a depth of field effect.

• A low to the ground camera closely following ants in the jungle down into the ground into their world.

• Photorealistic closeup video of two pirate ships battling each other as they sail inside a cup of coffee.

• a photorealistic video of a butterfly that can swim navigating underwater through a beautiful coral reef

• A computer hacker labrador retreiver wearing a black hooded sweatshirt sitting in front of the computer with
the glare of the screen emanating on the dog’s face as he types very quickly.
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